
,nt. J. Hraf Moss Tronsfir. Vol. 24. No. IO, pp. 1621-1629. 1981 ‘X17-9310/81/101621-09 SO2.00/0 
Printed in Great Britain 0 1981 Pergamon Press Ltd. 

AI, 
a, 

Nu, 
Nu,, 
n, 
PO 

Pr, 

4, 

r, 

Ra, 

HIGH RAYLEIGH NUMBER CONVECTION IN SHALLOW 
ENCLOSURES WITH DIFFERENT END TEMPERATURES 

G. SHIRALKAR~, A. GADGIL: and C. L. TIEN$ 

University of California, Berkeley, CA 94720, U.S.A. 

(Received 4 August 1980 and in revised form 24 March 1981) 

Abstract-Buoyancy-driven laminar convection in shallow horizontal enclosures (width/height >> 1) with 
adiabatic horizontal walls and isothermal vertical walls of different temperatures has been investigated for 
very high Rayleigh numbers (Ru >> 106). It is found that this flow regime, which is characterized by boundary 
layers lining both the vertical and horizontal walls, differs qualitatively from the low-Ra flow regime, in which 
the horizontal boundary layers are absent. The decreasing influence of Ra on the Nusselt number and the 
effect of the aspect ratio are analytically shown and then numerically verified. Comparison is made with 
existing experimental and numerical data, and a new correlation is proposed for the Nusselt number in this 
flow regime. An explanation is also advanced regarding the current controversy about the power dependence 

of the Nusselt number on Ra in narrow vertical channels. 

NOMENCXATURE 

dimensionless constant of integration ; 
dimensionless vertical temperature 

gradient ; 
width to height aspect ratio, L/H; 
dimensionless characteristic velocity ; 
defined by Nu = dRaP; 
gravitational acceleration [m/s’] ; 
enclosure height [m] ; 
enclosure width [m] ; 
local power dependence of Nu on Ra; 
dimensionless flow rate in the horizontal 
boundary layer ; 
Nusselt number based on height; 
asymptotic value of Nu as Ra + ^/- ; 
local power dependence of Nu on B; 
defined by Nu = dRaP ; 
Prandtl number; 
local power dependence of boundary layer 
thickness on B; 
local power dependence of a on B; 
Rayleigh number based on height H and 
AT; 

temperature [K] ; 
cold wall temperature [K] ; 
hot wall temperature [K]; 
temperature differential across enclosure, 

V-T,); 
horizontal velocity [m/s] ; 
dimensionless horizontal velocity, u?H/u; 
vertical velocity [m/s] ; 
dimensionless vertical velocity, c*H/u; 
horizontal Cartesian coordinate [m], 
Fig. 1 ; 

1 Graduate Research Assistant in Mechanical 
Engineering. 

j. Staff Scientist, Passive Solar Analysis and Design Group, 
Lawrence Berkeley Laboratory. 
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X, 

Y, 
Y? 

dimensionless horizontal coordinate, X/H; 
vertical Cartesian coordinate [m], Fig. 1; 
dimensionless vertical coordinate, Y/H. 

Greek symbols 

a, fluid thermal diffusivity [m’/s] ; 
6, dimensionless boundary layer thickness; 

r7 
stream function [m*/s] ; 
dimensionless stream function, $*/a; 

8, dimensionless temperature, 

(T-TM-,-T,); 
w, dimensionless vorticity, (I%/~x-~u/~‘J). 

Subscripts 

h, 

t, 

bottom wall; 

top wall. 

1. INTRODUCTION 

LAMINAR free convection in shallow horizontal en- 
closures (width/height >> 1) bounded by adiabatic 
horizontal walls and isothermal end walls at different 
temperatures was first investigated by Cormack, Lea1 

and Imberger [l]. Their theory for asymptotically long 

enclosures was extended to the high Rayleigh number 
range by Bejan and Tien [2] who developed an 
approximate solution by matching a boundary layer 
solution in the end region with the solution for the fully 
developed flow in the central ‘core’ of the enclosure as 
predicted by Cormack, Lea1 and Imberger. For a given 
large Rayleigh number, such a fully-developed inertia- 
free flow will exist in the core for sufficiently large B, the 
enclosure’s width-to-height aspect ratio. For smaller 
widths, however, the flow is qualitatively different in 
the core. Experiments by Al-Homoud and Bejan [3], 
performed with water at B = 16 and Ra 2 lo*, clearly 
indicate that under such conditions the core is largely 

stagnant except for boundary layers lining the top and 
bottom walls through which most of the heat transfer 
occurs. 
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The problem considered here is that of buoyancy 

induced iaminar flow in an enclosure with a large but 
finite B for the case of Ra + -A. This flow regime has 

received scant attention in the literature. A simple 
analytical model which captures the essential physics 
of this regime is established on the basis of the 

experimental evidence and numerical simulation. A 
qualitative solution is obtained for the core as a first 

approximation, and matched with the end-region 

solution obtained earlier by Bejan and Tien [2]. This 
yields the functional dependence of the Nusselt num- 
ber on the Rayleigh number in the form Nu = dRaP, 

where the coefficient d is a function of the Prandtl 
number and the aspect ratio B. It is shown that the 
previous work by Gill [4] for moderate aspect ratios 
leads to a Ra dependence (Nu _ Rcz”~) which is only 
asymptotically valid as Ra + CA, for shallow en- 

closures. Finally, numerical results are presented for 
Pr = 1 and B = 5 and 10 which strongly support the 
assumptions and results of the analytical model. 
Correlations for the heat transfer are then proposed on 
the basis of the analytical and numerical results. 

2. GOVERNING EQUATIONS 

The geometry of the enclosure is shown in Fig. 1. 
The enclosure has isothermal vertical walls, one hot 
and one cold. The horizontal walls are insulated. For 
steady, laminar 2-D flow the governing equations are : 

a’$ a2* 
jp+d\‘2=-rn 

u = a+jay, v = - a$jax. (4) 

Here, the Boussinesq approximation has been used. 
The boundary conditions are : 

atx = 0: 6 = 0, u=c=$=O, 
(5) 

atx = B: 0 = 1, u=t1=l//=O, 

at y = 0, i : aejay = 0, u=p=(J=O. 

The Nusselt number is given by: 

s 

I 

s 

1 
Nu = (se/ax - ue) dy = (aeiax), = o dy. (‘5) 

0 0 

Clearly, Nu depends on Ra, Pr and B. The problem 
addressed here is to estimate the effect of Ra in the 

boundary layer regime for the case of large but finite B 
and for moderately high Prandtl numbers. It is noted 
that the Pr -+ 0 case is qualitatively different from the 

one considered here, although both imply a deviation 
from the case of the inertia-free fully-developed flow in 
the core. 

3. CORE REGION ANALYSIS 

At large but finite values of B, a continuous increase 
of Ra will lead from a flow of the type considered by 

Bejan and Tien [2] to a flow which is qualitatively 
different, and one which is evident from the experi- 
ments of Al-Homoud and Bejan [3]. This flow is 
characterized by fast moving boundary layers lining 
the horizontal walls, through which most of the heat 

transfer takes place. 

Near the mid-height in the core (y = 0.5) the fluid is 
observed to be stagnant [3], in consistency with zero 
buoyancy. Numerical solution to the full equations of 
motion to be presented later also show that the 
isotherms and streamlines are indeed very close to 

horizontal and u 2: 0 and u = 0 near y z 0.5 throughout 
the core. The applicable equations in this region then 

are : 

u = 0, L’ = 0, RU (aejax) = 0, (7) 

a20/av2 = 0. (8) 

At y = 0.5, ,9 = 0.5 (based on experimental obser- 

vation) so that the solution to equation (8) is: 

O(y) = a(y-0.5) + 0.5, (9) 

where a is relatively independent of x. Thus, we have a 
picture, consistent with experiment, of vertical con- 

duction in the core between the two boundary layers 
moving in opposite directions. 

The experiments also indicate, as pointed out by the 
authors [3], that the flow in the core is not driven by 
local buoyancy but rather by the momentum imparted 
by the vertical boundary layers in the end region. 

Accordingly, the applicable equations in the boundary 
layers lining the horizontal surfaces are, using stan- 

dard boundary layer arguments : 

;(u~+v~)=$+Ra~ (10) 

a201ay2 = 0. (11) 

FIN;. 1. Enclosure geometry 
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Core Temperatures 

FIG. 2. Computed temperature profiles in the core, B = 5, Pr = 1 

The boundary conditions for the lower horizontal 
boundary layer, of thickness 6, are: 

At I’ = 0, u = 0 and ae/ay = 0 (12) 

At y/6 -+ ‘x, u = 0 and 0 -+ &, (13) 

where 8, is the limiting value of the mid-core tempera- 
ture profiie, equation (9) as y-to. The solution to 
equation (11) may be written at once, for the lower 
horizontal boundary layer : 

0 = (1 - a)/2 = e,, 

and similarly, for the upper boundary layer: 

(14) 

@ = (1 + a)/2 = 8,. (15) 

This profile is shown in Fig. 1 and agrees well with the 
numerically calculated profile, Fig. 2. The constant a 
characterizes roughly the temperature difference be- 
tween the top and bottom horizontal boundary layers 
inthecore.AsRa~O,a~OandRa~ a,a+ l.Fora 
large and finite value of Ra, a will be close to but still 
less than one. 

The mismatch in LW/ay between equation (9) on one 
hand and equations (14) and (15) on the other is a 
measure of the cooling of the top horizontal boundary 
layer and the heating of the bottom one due to vertical 
conduction in the core. This heat conduction is very 
small compared to the heat convection in the boun- 
dary layers and has been neglected in this treatment. 
The numerical simulation of the flow at B = 5 and Ra 
= 3 x lo9 indicates 

dx ” 3.5 

while 

thus confirming that the approximation is good. 
In calculating the Nusseit number the heat transfer 

in the stagnant part of the core is neglected. The 
contribution from the boundary layers is given by 

Nu = lit (0, - 0,) = *a, (16) 

where i is the dimensionless flow rate in the horizontal 
boundary layer. To obtain a relation between NU and 
Ra-dependent properties of the flow in the core, we 
begin with the integral form of the momentum equa- 
tion (IO): 

where the bar over de/ax represents an averaged value 
across the boundary layer. 

Use of any appropriate velocity profile of the form 

u = C ~f(.Y/~) (18) 

in equation (17) yields the relation : 

&(C26)=Alz+iRa62 (19) 

where A, is a constant independent of Ra and 
depending only on the shape of the functionf (y/6), and 
Pr. For example, use of a velocity profile chosen on the 
basis of experiment [3], e.g. u = C . exp (-y/S) . sin 
(y/6), leads to A, = 8 Pr. 

In the regime under study, the numerical simu- 
lations reveal that the horizontal boundary layers in 
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the core are driven both by the momentum imparted 
by the vertical boundary layers, and the local buoy- 
ancy. The entire regime is therefore characterized by a 
balance of forces indicated in equation (19) in the core 
boundary layer. Equating the power dependence of the 

inertia and friction we obtain from equation (19) 

C26 ^/ C B/6. (20) 

The TJ sign will be used to denote that both sides of the 
equation have the same power dependence on Ra. The 
parallel flow structure in the core (confirmed numeri- 

cally) implies that the appropriate characteristic scale 
length in the x direction must be B. Equation (20) thus 
gives 6 x C-1’2. This relation together with equation 

(16) then leads to 

Nu x nia x C6a ‘% C”2 a, (21) 

where from equation (18) the flow rate in the horizon- 

tal boundary layer is given by ti x C6. 

4. MATCHING WITH E&D RECIOh 

For the end region, the following equation may be 
deduced from Bejan and Tien’s [2] equations (32), (36) 
(39) and (40) and their discussion following their 

equation (46) : 

Nu = 0.354 Ra”4 a”4. (22) 

The parameter a, representing the temperature 
differences between the top and bottom horizontal 
boundary layers in the core, would be an increasing 
function of Ra, but always less than one. This is 
confirmed by experiment [3] and by the numerical 
results. Thus, if the power dependence of Nu on Ra is 
represented as Nu x Ram, then by equation (22), m > 
l/4. 

Equating equations (21) and (22) one obtains : 

Nu x C’t2 a y Ra1i4a”4 (23) 

so that 

C’ 2 x Ra1/4a3!4 (24) 

If a x Ra”’ then n, < l/3 since C, the characteristic 
boundary layer velocity cannot decrease with Ru. 

This upper limit on power dependence of a on Ra, 

when incorporated into equation (22) yields an upper 
limit on m, m < l/3. Further, although a increases 
with Ra, it cannot so increase indefinitely since a < 1. 
Therefore, the increase of a with Ra must level off and 
smoothly approach a constant value, probably one, 
asymptotically as Ra -+ x’. This suggests that m is not 
a constant but is rather a decreasing function of Ra and 
that as Ra -+ x, Nu + 0.354 Ra1’4 so that 

Nu 3 = 0.354 Ra’:4. (25) 

The decrease in m with increasing Ra within the 
same flow regime is a reflection of the gradually 
changing ratio between the buoyant driving forces at 
the vertical boundary layers on the one hand and the 
frictional resistance offered by the enclosure on the 
other, as Ra increases. In other words it reflects the 

decreasing influence of the core resistance on the 
vertical boundary layers. Therefore, with the increase 
of Ra from a low initial value, the transition from the 
type of flow considered in [Z] to the type considered 
here is characterised by the fact that inertia has just 
become significant in the core, or by boundary layers 
of thickness 6 lining the horizontal walls with 6 = 

0(0.5). An order of magnitude examination of equa- 
tion (19) with x = O(B) then suggests that at this 
lowest value of Ra within the regime, 

C2 = 0(4A,CB), 

so that C = 0(4A,B) and ti = 0(2A,B). Using these 

values in equations (16) and (22) gives us 

Nu = 0(2A,B)a = 0.35 Ra1’4a”4. 

Wit;1 the value of A, obtained in the discussion 

following equation (19) in the above relation at Pr = 1, 
the following relation between the values of Nu and Ra 

at the transition from friction-dominated to inertia- 

dominated flow in the core is given by 

li3 

0.1 (26a) 

i.e. 

Ra = O( 103) Nu3B. (26b) 

Equation (26) is only an order of magnitude criterion 
for transition into this high Ra regime and is not 
intended to represent the power dependence of the 
heat transfer on Ra, nor on B. Our numerical simu- 
lation indicates that transition into the boundary layer 

regime occurs somewhere between Ra = lo6 and Ra 

= 3 x lo6 for B = 10 and unit Prandtl number. 
From the preceding discussion, it would follow that 

the dependence of the Nusselt number on the aspect 
ratio should decrease gradually as the Rayleigh num- 
ber increases, reflecting the weakening effect of the 
core-resistance on the vertical boundary layers on the 
end walls. Asymptotically as Ra -+ x’, Nu, from 

equation (25) is completely independent of B. 
The growing independence of Nu from the aspect 

ratio, B, as the Rayleigh number increases, can also be 
obtained by the following argument : For a given Ra 

the influence of B on Nu is through the parameter a in 
equation (22), where a = a(B, Ra) (the value of Pr 

being fixed). For two different values of aspect ratio B, 

and B, (B, > B,), a(B,, Ra) < a(B,, Ra). Hence, from 
equation (22), Nu(B,, Ra) < Nu(B2, Ra). But since in 
thelimit Ra -+ -/-,a(B,, Ra) L a(B,, Ra) = l,it follows 
that as Ra-+ x, Nu(B,, Ra)= Nu(B,, Ra). Thus the 
Nusselt number becomes independent of B in the 
asymptotic limit of Ra + ~8. 

In the following analysis, the rx sign indicates that 
the expressions on both sides of the 8x sign have the 
same power dependence on the aspect ratio, B. 

The flow rate, tit, in the horizontal boundary layer is 
given by 
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where we have used equation (20) to eliminate C. 

Using this value of ti in equation (16), and equating 
this to the power dependence of the Nusselr number on 

B, through the parameter a of equation (22), one gets : 

Nu x B” ‘IC aLI4 x Ba/6. (28) 

Now, C must be a decreasing function of B, so that 

shallower enclosures yield lower velocities. Then if the 
power dependences of 6 and a on B are expressed as 6 
CL Bq and a x B’, substituting these expressions in 
equation (27) yields a lower limit on q, q 2 l/2. 

Substituting for 6 and a in equation (28) yields: 

Nu X Br!4 ,x B’+r-q, (29) 

Therefore,n = r/4 = 1 + r - q,orr = 4/3(q-1)and 
n = l/3 (q - 1). Thus equation (28) becomes: 

Nu X B’/3’4-“. (30) 

At asymptotically high values of Ra, both a and Nu 
are expected to be independent of B(r+O and q-1). 
Since Nu should decrease with increasing B, the 

exponent (q- 1) in equation (30) must be negative. 
This yields an upper limit on q, q < 1. Thus we have 1 
> q 2 l/2. Substituting this relation in equation (30) 
gives the relation 0 2 n 2 -l/6, for the power 
dependence of Nu on B, equation (28). The sensitivity 

of Nu to B should monotonically decrease with 
increasing Ra, so that at asymptotically large values of 
Ra, q -+ 1, and at lower Ra, we could expect that q is 
closer to 0.5. This implies from equation (30) that Nu 

x B-‘16. Figure 5 illustrates the behavior of n 

computed from the numerical results for the two 
aspect ratios (B = 5 and 10): n drops monotonically 

from a value of -0.161 at Ra = lo6 to a value of 
-0.032 at Ra = 3 x 109. This behavior is in good 
agreement with the prediction. 

5. NUMERICAI. CAlJXlI,ATIONS 

The flow was numerically simulated by solving the 

full equations of motion with the Boussinesq approxi- 

mation. The computer simulation program uses the 

primitive variables u, u, T and P (pressure) on 
staggered grids to iteratively solve the full equations 
of motion. The differencing scheme used in this program 
proposed by Patankar and Spalding [5] switches 

between the central difference scheme (CDS) and 
the upwind difference scheme (UDS) depending on the 
local grid Peclet number, allowing the retention of 

numerical stability and giving meaningful numerical res- 
ults even at the very high Rayleigb numbers investigated 
here. A grid with variable grid-spacing, with 3 1 nodes in 
the y direction and 37 nodes in the x direction was used. 
The iteration scheme, using the alternating direction 
implicit (ADI) method, employs extreme under- 
relaxation in the initial few iterations to ensure 
numerical stability until an approximate flow pattern 
is established. The fractional changes in the values of 

all the field variables at each node from one iteration to 
the next are monitored. The iterations are terminated 
when these fractional changes, or residues, fall below a 

value of 10-5. The execution time for obtaining the 
umerical solution to the full equations of motion, for 

flow in an enclosure with B = 10 and Ru = 3 x 10’ 
was 434 s on the CDC 7600 machine. The numerical 
code and its validation have been described in detail 
elsewhere [6, 71. 

Results have been obtained with a Prandtl number 

of unity for two aspect ratios B = 5 and 10 for a range 

of lo6 < Ra < 3 x 109. The computed temperature 
profile is shown for the core mid-section in Fig. 2 in 

agreement with the model, Fig. 1. The horizontal 
component of the fluid velocity in the core mid-section 
is shown as a function of vertical distance in Fig. 3. The 

Core Velocities 

0.6 - 

FIG. 3. Computed horizontal velocity distribution in the core, B = 5, Pr = 1 
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qualitative changes in the velocity profile with increas- 
ing Rayleigh number are apparent. At Ra = lo6 the 

velocity profile does not show any boundary layer; at 
the higher values of Ra, boundary layer structure is 
evident. The flow profiles do not show the small 
reverse circulation observed [3] ; nor do the boundary 
layer velocities die off as rapidly towards the center (J 
= 0.5) as in the experiment, so that the center of the 
core is not quite stagnant but has low velocity fluid 

within it. 
Equation (16), Nu = nia, when considered in the 

light of this numerical result rather than the experi- 

ment, would appear to retain its validity, at least 
approximately. Although it may not now be permis- 
sible to assume that the average temperatures in the 

velocity boundary layers are (1 + a)/2 and (1 - a)/2 

respectively (so that the average temperature differ- 
ence is no longer a), the difirence in the average 
temperature between the two thick boundary layers, 
will be proportional to a due to the linearity of the 

temperature profile away from the walls. 
The results from the numerical simulations indicate 

that buoyancy cannot be neglected in the horizontal 
boundary layers. For an enclosure with aspect ratio I3 
= 10, the value of (SI/c!x) in the horizontal boundary 

layers in the core decreases from 0.010 at Ra = 10’ to 
0.008 at Ra = 109. The isotherms and streamlines in 

the core are very close to horizontal; the value of 
(%/?x) at mid-height (J, = 0.5) drops from 0.0031 at 

Ra = lO’,toO.O017atRa = 109.Thesizeofthecoreis 
very close to B. At Ra = lo’, approx. 98% of the 
enclosure width is occupied by the core, by Ra = 3 x 
lo9 this fraction has increased very slightly to about 
99% of the enclosure width, thus validating the 
assumptions and arguments made earlier. 

The calculated values of Nu for B = 5 and 10 are 
shown in Fig. 6 together with the experimental results 
of [3] and the asymptotic prediction according to 
equation (25). The (local) slope of the log /Vu-log Ra 

curve is the parameter m and is shown as a function of 
Ra in Fig. 4. As predicted by theory, m drops 
continuously from the value of 0.306 at Ra = 1.7 x 
lo6 to the value 0.271 at Ra = 1.7 x lo9 for the case of 
B = 5 ; and a levelling off at higher Rayleigh numbers 
is evident from the figure. There is a similar behavior 
for B = 10. 

The sensitivity of the Nusselt numbers to B is shown 
as a function of the Rayleigh number in Fig. 5. As 
discussed in the previous section, the sensitivity as 

measured by n, where Nu ‘CL B” for a given Ra, should 
monotonically decrease from some maximum pro- 
bably close to (but less than) -0.167 towards 0 as 
Ra-+ x. Figure 5, while being based on only two aspect 

ratios, clearly exhibits this behavior. 
The values of Nu obtained from the numerical 

simulations could be correlated with Ra according to : 

where 

Nu = &Rap, (31) 

p = 0.25 - 0.380 Ra-0.1917, for B = 5, (32) 

and 

p = 0.25 - 0.472Ra-0~‘g17, for B = 10. (33) 

Equation (32) satisfied all the data points for lo6 < Ra 
< 3 x lo9 to within 1.7%. Equation (33), for 3 x lo6 
< Ra < 3 x lo9 is accurate to within 1%. 

In both these correlations, p(Ra) -+ 0.25 as Ra + x. 
The importance of distinguishing the variable nature 
of p from its asymptotic value is illustrated in Fig. 7 

where we have plotted the ratio (Nu,,,,,,~,~~/Nu,,~~~~~~) 
as a function of Ra for the correlation (31,33) as well as 
the correlation using the asymptotic value of p, 
equation (25). 

6. COMPARISON WITH EARI.IE:R WORK 

There are relatively few published experimental and 

I I I I I I I 

.:?bz$&__ f : 
___m2E.._________________ 

0.24 - 

0.20 I I I I I I I 

to6 3 IO’ 3 106 3 IO9 3 10’0 
Ra 

FIG;. 4. Rayleigh dependence of m, Pr = 1, B = 5 and B = IO. 



High Rayleigh number convection in shallow enclosures 1627 

Ra 

FIG. 5. Computed aspect ratio dependence of Nu between B = 5 and B = 10 for Pr = 1. 

Nu 

0 Pr -- 
l Experiment131 16 ~6.3 

3- 0 Numerical 
( A Present Study Y : IO 

I- 1 I I I I I I 
IO6 3 IO’ 3 IO8 3 IO9 3 IO’O 

Ra 

FIG. 6. Heat transfer as a function of Rayleigh number. 
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Correlation (31) 

0 p = 0.25 

l p from Equation (32) 

’ 3 IO’ 3 IO’ 3 IO’ 3 10’0 

Ra 

FK;. 7. Ratio of Nu from correlations to numerically computed Nu for B = 10, Pr = 1. 
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numerical results for shallow enclosures. However, the 
limited existing data appear to support the present 
study. The variation in the exponent m in the pub- 
lished correlations presented below could well be a 
result of different studies having employed straight line 
fits (to a log Nu-log Ra graph) in different regions of 
the overall log Nu-log Ra curve. This variation in m is 
between 0.375 and 0.291. Additionally, as the dis- 
cussion in the previous sections shows, there is good 
reason for arguing that as Ra + Y_, m + 0.25. 

Al-Homoud and Bejan [3] reported: 

Nu = (0.0168 f 0.0002) Ru’.~“. (34) 

It is noteworthy that if their data point for the highest 
Ra is discarded, their 5 data points located at the 
higher Ra end of their data exhibit a slope, on a 
logarithmic plot, close to 0.329. Their data points are 
shown in Fig. 6. When their data were considered 
along with those of Imberger [8] they obtained 

N, = (0.098 f 0.008) Ru’.‘~‘. (35) 

The experiments of Imberger 181, when considered 
inde~ndently, appear to support the behavior of the 
Nusselt number predicted here in the high Rayleigh 
number regime-witness his Fig. 8, which indicates a 
change of slope in the log Nu-log Ra curve, approach- 
ing 0.25 at the edge of the higher Ra end of the data 
span. 

Tseng’s numerical results [9] for B = 2, lo5 < Ra < 

9 x 10’ show 

NM = 0.051 R~J’.=~, (36) 

while Han’s numerical results [lo] for B = 1, Pr 2 I, 
Ra = 0(106) give 

Ntt = 0.135 Ru’.~I~. (37) 

7. REt.ATIOR TO FI.OW IN T\;ARROW VERTICAL 
ENCLOSURES 

In his classical paper on vertical enclosures, Elder 
[ll] reported his experimental observation of the 
constant thermal stratification in the core for higher 
Ra, which he was able to explain analytically. His 
analytical results, based upon his experiments, Iead to 
the following results in our notation: 

Bi2 
Nzi = a 

I 
r(x) dx, 

0 

where a is now the stratification in the core in the _r 
direction, and L’(X) is the vertical velocity in the core, 

r(x) x Ra”* a-‘!*. 

The thickness, 6, of the boundary layers lining the 
vertical walls in the core is given by 

6 % Ra-1hta-‘!4 

where the -c sign denotes Rayleigh dependence. One 
then obtains : 

similar to the shallow enclosure case, equation (22). 
Elder suggested that a is related to the interaction of 
the two boundary layers lining the vertical walls. His 
measurements, moreover, clearly indicate that a’s 
power dependence on Ra decreases with increasing Ra 

and a approaches an asymptotic value independent of 
Ra. These facts, taken together, suggest that in the 
vertical slot geometry also, the dependence of Nu on 
Ra cannot be expressed over the whole range of Ra as a 
simple power law, but that rather the behavior is 
similar to the shallow enclosure case. The discrepancy 
in m existing in the literature pointed out and dis- 
cussed by MacGregor and Emery [12] and more 
recently by Yin et al. [13] may well arise from this 
variation in m. A similar situation may account for the 
discrepancy in n. 

8. CONCLUDING REMARKS 

The high Ra laminar regime for shallow enclosures 
has been characterized by its main physical features. 
The power dependence of the Nusselt number on the 
Rayleigh number has been predicted according to Nu 
xRam. It is indicated that the exponent m is a 
decreasing function of Ra, and not a constant as might 
otherwise be suspected, decreasing from a maximum 
probably close to (but less than) l/3 to a minimum of 
l/4 as Ra -+ K. This should be useful not only for 
understanding this regime, but also as a basis for 
formulating appropriate Nu correlations. The asymp- 
totic behavior of the Nusselt numbers as Ra -+ r, has 
been predicted explicitly. The process of Ra -+ ‘jc must 
be qualified by the probable onset of turbulence before 
m actually reaches 0.25. 

The effect of the aspect ratio on the Nusselt number 
has also been discussed and a correlation has been 
proposed for the Nusselt number as a function of 
Rayleigh number based on the results ofthe numerical 
simulations. A rough criterion (26) has been proposed, 
for a given aspect ratio, giving the values of Nu and Ra 

above which the flow will be characterized by boun- 
dary layers lining the horizontal walls in the core. 
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CONVECTION A GRAND NOMBRE DE RAYLEIGH DANS DES ENCEINTES ETROITES 
AVEC DIFFERENT~S TEMPERATURES AUX EXTREMITES 

R&m&-La convection naturelie laminaire dans des cavites ttroites et horizontales (longueur!hauteur >> 
l), avec des parois horizontales adiabatiques et des parois verticales isothermes mais B tempdratures 
diffkrentes, a ttk ttudite pour des nombres de Rayleigh tris ClevCs (Ra >> 106). On trouve que ce rtgime 

d’ecoulement, caracttrisk par des couches limites SW toutes les parois, difftke qualitativement du rtgime I 

faible Ra, par le fait que les couches limites horizontales sont absentes. L’influence dkcroissante de Ra sur le 
nombre de Nusselt et l’effet du rapport de forme sont analytiquement d&&s et nurn~~q~ment verifies. Une 
comparaison est faite avec les don&es ex~rimentales et numkrique, et une nouvelle formule est proposk 
pour le nombre de Nussdt. Une explication est avancke B propos de la controverse relative g la dipendance 

du nombre de Nusselt vis-8-vis de Ra dans les espaces ttroits verticaux. 

FREIE KONVEKTION BEI HOHER RAYLEIGH-ZAHL IN FLACHEN 
HOHLRbiUMEN MIT UNTERSCHIEDLICHEN ENDTEMPERATUREN 

Zusammenfaaaung-Es wurde fiir sehr hohe Rayleigh-Zahlen (Ra >> 106) die durch Auftrieb bedingte 
laminare Konvektion in flachen horizontalen Hohlrlumen (Breite/Hijhe >> 1) mit adiabaten horizontalen 
W&den und isothermen vertikalen WInden von unterschiedli~her Temperatur untersucht. Es wurde 
festgestellt, da8 dieser Str~mung~ustand, der durch sowohl an den vertikalen wie an den horizontalen 
Wenden anliegende Grenzschichten gekennzeichnet ist, sich qualitativ von dem Striimungszustand bei 
niedrigen Rayleigh-Zahlen unterscheidet, bei dem die horizontalen Grenzschichten fehlen. Der abnehmende 
EinfluD von Ra auf die Nusselt-Zahl und die Auswirkung des Seitenverhiltnisses werden analytisch 
begriindet und dann numerisch beststigt. Es wird ein Vergleich mit vorhandenen experimentellen und 
numerischen Daten durchgefiihrt und eine neue Korrelation fiir die Nusselt-Zahl bei diesem Striimungszu- 
stand vorgeschlagen. AuIjerdem wird eine Erkllrung vorgeschlagen, die auf die gegenwktige Kontroverse 

urn die Potenzabh~gigkeit der Nusselt-Zahl von Ra bei engen vertikalen Kan%len Bezug nimmt. 

KOHBEK~H~ B HEl-JIY6OKIIX FIOJIOCTXX C BEPT~KAnbHbIMH ~EHKAM~ 
PA3~~~HO~ TEM~~PATYPbI rIPM 6O~b~~X 3HA~EH~~X YMCJIA PEJlEIf 

AitHoTaunll - BbI3BaHHaa nOIlz*MlibIMIS CKnaMMi JIaMBHapHaR KOHBeKUHIl B Herny6oKHx rOpH3OHTanb- 

HbIX nOnOCTRX (OTHomeHHe UlSipHHbl nOjlOCTW K I”,k,He $ 1) C aDWa6aTHSeCKWMU rOpH3OHTa,,bHbIMH 

H USOTepMWeCKHMW BepTllKaJlbHbIMH CTeHKaMH, WMeH)UIkiMH pa3HyKl TeMnepaTypy, HCCJleLlOBa~aCb 

npa OYeHb 6onbunix JHaYeHHIlX wicna PeneR (Ra >> 106). nOKa3aH0, “ITO fiaHHblii pewt&iM Teqenna. 
XapaKTepK3yKWHiiCa HanlllYIieM nOrpaHWIHMX CJIOeB KaK Ha BepTHKanbHbrX, TaK H I’OpH30HTZUIbHbIX 

creHKax, KaYecTaemio 0TmiYaeTcfi OT pemsMa TeYemia c zuanblb4 SWCJIOM Penen. KorLlit norpaHsstibIe 
cnon Ha rOpn3OHTa~bH~X CTeHKaX OTC~TCTB~KYI’. ~~~a6eBa~~ee BnNRHHe wcna Ra Ha Kp~Tep~~ 

HyCCenbTa, a TaKXe BJSfIIHiie OTHOLUeHAa CTOPOH aHaJIH3npyFOTCa TeOpeTHYeCKH I4 PaCCWTbIBaEOTCa 

‘(IICJleHHO. npOBeLIeH0 CpaBHeHkie C HMeK)IltHMUCR 3KCnepHMeHTaJlbHbIMH II 4HCJleHHbtMW LlPHHbIMW W 

IlpQLlOXCeHO HOBOe COOTHOUWIHe D,llSl KptiTepH%l H)‘CCeJlbTa UpH TaKOM pX&iMe TWf?H&iR. TaKxe 

npeDJlOxeH0 06bacHeHHe BbIWBamUtefi o6cyxcnewie CTeneHHOfi JBBWCHMOCTH WiCJla HyCCenbTa OT Ra 
B )‘3KAX BepTBKanbHblX KaHa,,aK. 


